
1

John Osborne

Chief Architect, Public Sector

josborne@redhat.com

@OpenShiftFed

Building a Culture of
Continuous Learning

The Three Ways

1. “Systems thinking”

2. “Amplify feedback loops”

3. “Culture of continual experimentation
and learning”

These are deliberately tech agnostic,
though often tech-enabled
https://itrevolution.com/the-three-ways-principles-underpinning-devops/

First Way

Third Way Second Way

Boeing's Everett factory near Seattle
https://upload.wikimedia.org/wikipedia/commons/c/c8/At_Boeing%27s_Everett_factory_near_Seattle_%289130160595%29.jpg
Creative Commons

● Developer self-service

● Smaller batch sizes

● Fast feedback
○ Logging
○ Monitoring
○ Telemetry

● Shifting left on security

○ Automated testing / scans
○ Cross functional teams

involved earlier in process

Lean Manufacturing Applied to Software
(Replicating the Output from the Toyota Production System)

● TPS creates a community of scientists

● Whenever Toyota defines a specification, it is establishing
sets of hypotheses that can then be tested (scientific
method)

● The system actually stimulates workers and managers to
engage in the kind of experimentation that is widely
recognized as the cornerstone of a learning organization

Building a Culture of Continuous Learning
(Replicating the DNA from the Toyota Production System)

“To understand Toyota's success, you have to unravel the paradox - you have to see that
the rigid specification is the very thing that makes the flexibility and creativity possible.”

Rules are the DNA of the Toyota Production System

How People Connect

● Every customer supplier
connection must be direct

● Must be an unambiguous
yes-or-no way to send requests
and receive responses

● As a result, there are no gray
zones in deciding who provides
what to whom and when

How the Production Line
is Assembled

● Pathway for every product and
service must be simple and
direct

● No forks or loops

● Runs contrary to conventional
wisdom about production lines
and pooling resources

How to Improve

● Improvement must be made
using the scientific method

● All the rules require that
activities, connections, and flow
paths have built-in tests to signal
problems automatically

How People Work

● All work shall be highly specified
as to content, sequence, timing,
and outcome

● Even complex and infrequent
activities, such as training an
inexperienced workforce at a
new plant, launching a new
model, etc are designed
according to this rule.

Toyota does not consider any of the tools or practices - such as kanbans or andon cords, which so many outsiders have observed
and copied-as fundamental to the TPS. Toyota uses them merely as temporary responses to specific problems that will serve until a
better approach is found or conditions change.They're referred to as "countermeasures," rather than "solutions," because

that would imply a permanent resolution to a problem.

That’s great, but I live in the real world and
everything is a dumpster fire

● Take a deep breath

● Changes span tools, process,
culture

● Focus on constraints

● Use data available from the
State of DevOps report

○ Leverage OSS

○ How you define cloud
matters

○ Shift left on security

State of DevOps Report
Key Findings (team level)

● 4 key metrics differentiate performers

● Open source software improves performance

● Outsourcing by function hurts performance

● How you implement cloud infrastructure
matters

● Key technical practices drive high performance
- including “continuous testing… integrating
security earlier”

● Tightly coupled architectures hurt
performance

● Concurrent efforts (processes & tech) drive
success

Accelerate State of DevOps 2019
https://services.google.com/fh/files/misc/state-of-devops-2019.pdf

Cloud Infrastructure

Self-service

Broad network access

Resource pooling

Rapid elasticity

Measured service

● It’s not where you run, but how you
run

● Cloud can be run on a mainframe,
the tactical edge, or a special
access environment

● It fundamentally matters how you
define cloud for your mission

● Elite performers are 24x more
likely to hit these characteristics

Back to the dumpster fire

● Focus on your constraints

○ Continuous learning requires
a stable system

● Learn by doing industry

○ No one true light

● Prepare for common pitfalls

● Leverage open source and cloud
infrastructure

● Everyone can do something, that
something often depends on your
role

10

Tips On Getting Started

● Choose your initial applications wisely

○ Low resistance, high influence

○ Start small and build momentum

○ Be ready for the frozen middle

● Create a cross functional team for each application

● Make your work visible

● Stay laser focused on removing constraints

https://www.govtech.com/opinion/How-Government-Can-Accelerate-the-Adoption-of-DevOps-Contributed.html

Build Bridges Not Walls

● Create Cross Functional Teams

○ Assign IT liaison to each teams

○ Create Shared Services

○ Use chat not tickets

● Make work visible

○ Shared tools

○ Single repository of truth

● Blameless Post-Mortems
https://www.govtech.com/opinion/How-Government-Can-Accelerate-the-Adoption-of-DevOps-Contributed.html

Build Bridges Not Walls

● Focus on the flow

○ Automate manual processes

○ Change boards not correlated to better software

○ Limit Work In Progress

● Practice not an end-state

○ Culture of high trust and learning

https://www.govtech.com/opinion/How-Government-Can-Accelerate-the-Adoption-of-DevOps-Contributed.html

OPEN PRACTICE LIBRARY

https://openpracticelibrary.com

Value Stream & Process Mapping | Impact Mapping | Event Storming | Backlog Refinement | Celebrating Failure | Burndown |
Social Contract | Stop the World Event | Team Spaces | Team Sentiment and more...

Focus, Flow, and Joy
Why every DevOps effort involves a platform

Kubernetes makes for a good DevOps backbone because everyone will speak the same language

source
repository

DevSecOpsdev

+
Manifests

On prem

Colo

Public Cloud Provider

Be prepared to adopt something in the SRE space
SRE Hierarchy of Needs

Google SRE Book is a strong starting point for things like incident response, metrics (4 Golden Signals)

DevOps Failure Modes
Delays => Larger Blast Radius => Instability

Build vs Buy

Vanity metrics

Building a distributed monolith

Platform Field of Dreams

Expectation setting

Signal to Noise of Logs and Traces

Alert Fatigue

Cross functional team frustrations

Just writing glue code Copying Google SRE (or other high
flyer)

Grassroots > Big Bang (CoE / Dojo) Not measuring success by team

Where you want to get to

● Improvement of Daily Work

● Increased Automation

● Winning over the frozen middle

● Building a culture of continual
experimentation and learning

First Way

Third Way Second Way

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

Thank you

